Role of endogenous ROS in pancreatic β-cell dysfunction

Chiba University Graduate School of Medicine

Eri Mukai
The effect of endogenous ROS on metabolism-secretion coupling
Src inhibition ameliorates impaired IS and ATP production in GK islets

Wistar

![Insulin release (ng/islet/30min)]

GK

![Insulin release (ng/islet/30min)]

ATP content (pmol/islet)

VE+VC: ROS scavenger
PP2 (10 µM): Src inhibitor
Src inhibition decreases ROS production in GK islet cells.

Src activity is endogenously up-regulated in GK islets

Mukai E et al. Diabetes, 2011

[Images of Western blots showing increased band intensity of Src pY416 and Src pY416/Src in GK compared to Wistar islets.]

Caption: "Src activity is endogenously up-regulated in GK islets."
Exendin-4 suppresses Src activity in GK islets

GK
- IP Src
 - Control
 - Ex
- Src pY416
- Src

Wistar
- IP Src
 - Control
 - Ex
- Src pY416
- Src

Graphs
- Src pY416/Src
 - Band intensity (ratio)
 - 16.7 mM G
 - Cont
 - Ex
 - *p<0.05
 - n=4

Legend

Notes
- Exendin84 suppresses Src activity in GK islets
- *p<0.05
- n=4
Exendin-4 decreases ROS production in GK islet cells

Graphs:
- **Upper left graph:** CM-D CF fluorescence (fold increases) over time (min) for 16.7 mM G. Cont, Ex (100 mM), with statistical significance marked as *p<0.05, n=5~7.
- **Upper right graph:** CM-D CF fluorescence (fold increases) for 16.7 mM G. Cont, Ex, PP2, Ex+PP2, with statistical significance marked as *p<0.05, †p<0.01, ns, n=4~6.
- **Lower left graph:** *in vivo* gene transfection with Celiac artery, Liver, Spleen, Pancreas, Transgene: GFP, Confopectral, Optic.

Referenced Studies:
Exendin-4 increases ATP production in GK islets

Wistar

![Bar graph showing ATP content in Wistar islets](image1)

GK

![Bar graph showing ATP content in GK islets](image2)

Mukai E et al. Diabetes, 2011
Src activity is endogenously up-regulated in GK islets, which contributes to ROS production and impaired ATP production. GLP-1 signal ameliorates ROS production and ATP production through suppression of Src activation.
The decrease in ROS production by exendin-4 is dependent on Epac

Mukai E et al. Diabetes, 2011
PI3-K/Akt signaling is involved in the downstream pathway of Src.

LY294002 (50μM), Wortmanin (0.5μM): PI3-K inhibitor

Mukai E et al. Diabetes, 2011
The effects of exendin-4, suppression of Src activity and decrease in ROS production, are dependent on not PKA but Epac.
PI3K/Akt signaling, inhibited by exendin-4 or Src inhibitor, is involved in the downstream pathway of Src and regulates ROS production.

GLP-1 signaling improve β-cell function in the diabetic state because it ameliorates impaired metabolism-secretion coupling
The effect of a longer suppression of ROS on metabolism-secretion coupling

Antioxidant system

- Tempol
- SOD
- CAT
- Gpx1
- Ebselen

Glucose → Metabolism → ATP → Insulin secretion → GKβcell

ROS ↑ → Src ↑ → ATP ↓ → Insulin secretion ↓
TE treatment ameliorates impaired IS and ATP production in GK islets

Sasaki M et al. Diabetes, 2013
The effect of *in vivo* TE treatment on β-cell function in GK

IPGTT

- Glucose (mg/dl)
 - Control
 - TE

- Insulin secretion (ng/30min/islet)
 - 16.7mM G
 - 2.8mM G

* *p<0.05, **p<0.01 vs control

Sasaki M et al. Diabetes, 2013
Lactate overproduction uncouples between glycolysis and mitochondrial oxidation in GK islets

Glucose → Glycolysis → Pyruvate → Lactate → Oxidation

Krebs cycle

Sasaki M et al. Diabetes, 2013
TE treatment decreases the expression levels of LDH-A and HIF1α in GK islets

LDH-A

HIF1α

β-actin

C TE C TE

Wistar GK Wistar GK

† p<0.01

Sasaki M et al. Diabetes, 2013
HIF1α inhibition improves lactate overproduction and IS in GK islets

Sasaki M et al. Diabetes, 2013
ROS reduction ameliorates metabolism-secretion coupling by suppressing lactate overproduction through the inhibition of HIF1α stabilization. The Warburg-like effect, which is characteristic of aerobic metabolism in cancer cells by which lactate is overproduced with reduced linking to mitochondrial metabolism, plays an important role in impaired metabolism-secretion coupling in diabetic β-cells.
Acknowledgments

Dept of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University

Shimpei Fujimoto
(Professor of Kochi University)
Rieko Kominato
Mayumi Sasaki
Yuichi Nishi
Yuichi Sato
Hiroki Sato
Yumiko Tahara
Kasane Ogura
Nobuya Inagaki

Dept of Oncogene Research, Research Institute for Microbial Diseases, Osaka University

Chitose Oneyama
Masato Okada

Kansai Electric Power Hospital

Yutaka Seino